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An EEG study on music listening with ICA approach 
独立成分分析手法を用いた音楽鑑賞における脳波研究 

 

Qi Zhang, Norikazu Yoshimine 
張琪、良峯徳和 

 
Abstract: Music listening is one of the most popular and convenient entertainment 
method for human beings. When listening to music, people can get relaxed by 
soothing music or become excited by rock music. As we know that mental feelings 
are generated by the human brain, studying the human brain activities when they 
are listening to music may reveal the mechanism of mental processes for 
generating these feelings. In this paper, we conducted experiments to measure the 
brain activities when the subjects were listening to classic music, using a portable 
EEG (Electroencephalogram) system. The EEG data were analyzed using ICA 
(independent component analysis) approach. Occipital alpha band, frontal midline 
theta band, occipital-temporal or frontal beta band activities were observed in the 
experiments. These experimental results suggest that the subjects were under a 
relaxed condition when they were listening to classic music with their eyes closed. 
At the meantime, they engaged in the music listening and enjoyed the music with 
imagery or memory recalling.  

Keywords: EEG (electroencephalogram), ERP (event-related potential), ICA 
(independent component analysis), music listening 

 
要旨 : 音楽鑑賞はさまざまな娯楽活動の中でも、もっとも容易で広く享受されている

娯楽活動である。癒し音楽は聴く者の心をリラックスさせ、ロック音楽は聴く者を興

奮した気分にさせる。人間の感情は脳内で生み出されるので、音楽鑑賞する際の脳活

動を研究することで、そうした感情が生起する過程や仕組みの解明につながる可能性

がある。本研究では、携帯型脳波計を用いてクラシック音楽を聴いている際の被験者

の脳活動を計測し、その EEG データを収集、さらに独立成分分析手法を用いてデータ

分析を行った。その結果、後頭部のアルファ波、前頭正中線シータ波、側頭または前

頭部のベータ波が観測された。これらの実験結果から、閉眼でクラシック音楽を鑑賞

しているときには、被験者の心はリラックスしていると同時に、音楽に集中し、想像

や想起などを伴いながら音楽を楽しんでいることが推察される。 

キーワード: EEG、脳波、事象関連電位(ERP)、独立成分分析(ICA)、音楽鑑賞 
 
 

1. Introduction 

Music listening is one of the most popular and convenient entertainment method for 

human beings. When listening to music, people can get relaxed by soothing music or 

become excited by rock music. Why can music have such a power to influence people’s 

feelings? As it is known that the brain activities determines the behaviors and feelings 

of human, understanding the brain activities when listening to music will be an effective 
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way to reveal the power of music on peoples’ affective feelings. Several researches have 

been conducted to study the brain activities on music listening (Adamos, D., et al., 

2016, Poikonen, H., et al., 2016, Daly, I., et al., 2014, Jatupaiboon, N., et al., 2013, 

Lin, Y. P., et al., 2010), where the happiness or emotion related to the music listening 

was detected using neural networks based on EEG. In the research by Jatupaiboon 

group, besides of the music stimuli, the subjects also watched the visual stimuli when 

they were listening to the music (Jatupaiboon, N., et al., 2013). In the research 

conducted by Lin group, multimedia stimuli were presented (Lin, Y. P., et al., 2010). 

Different from these researches, we conducted experiments using audio stimuli only, 

without any other types of stimulus added upon them. The experimental results focusing 

on the event-related potential (ERP) analysis of EEG data were reported (Zhang, Q. & 

Yoshimine, N., 2015). In this paper, we analyze the data using the independent 

component analysis (ICA) approach. The independent components of the brain 

activities are examined in several typical frequency ranges.  

 

2. EEG Data Analysis Methods 

The EEG data are the potentials recorded on the scalp. These potentials are regarded as 

the reflection of neuron activities. It is known that human brain consists of billions of 

neurons. When human beings perform cognitive or/and motor tasks, neurons produce 

spikes of voltage to form electrical pulses travelling in the brain. These electric currents 

produce the potentials on the scalp. EEG measurement is the method to record these 

potentials over time by the electrodes placed on the scalp. By analyzing these EEG data, 

the corresponding brain activities can be inferred. There are several methodological 

approaches to analyze EEG data (Makeig, S., et al., 2004). Among them, ERP and ICA 

approach are the two of the most popular analysis methods.  

ERP analysis method focuses on the potential changes of EEG data that are elicited 

by the sensory, motor or cognitive events. The EEG data corresponding to the specific 

events are extracted from the continuous recordings as the epoch data. ERPs can be 

obtained by averaging a series of epoch data for the same type of events. The averaging 

process are assumed to remove the spontaneous potentials with various phases, which 

are not related to the cognitive or motor events. ERPs are calculated on single electrode 

(also called single channel) basis. Researches on ERPs usually examine the potential 

changes at certain latency range, such as 100 ms or 200 ms after the stimulus was 

presented (Poikonen, H., et al., 2016) 

On the other hand, ICA approach presupposes that the EEG signals are the 
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summation of the postsynaptic potentials produced when a large number of similarly 

oriented cortical neurons fire in synchrony. ICA decomposes EEG data based on a 

spatially transformed component basis (Onton, J. & Makeig, S., 2006, Makeig, S. & 

Onton, J., 2011). Instead of examining a single channel data, the whole multi-channel 

data are processed together using spatial filters. In the ICA decomposition, the 

independent component filters are chosen to produce the maximally temporally 

independent signals available from the channel data. These are, in effect, information 

sources in the data recorded at the scalp channels. By this means, ICA identifies the 

distinctive information sources which are independent of each other. In addition, ICA 

also can separate the sources of artifacts which are not related to the brain activity at all, 

such as those from eye-blinks, breathing, heartbeat, or 50 Hz line noise. In summary, 

ICA is an effective method for removing artifacts and separating sources of the brain 

signals. 

In the authors’ previous work (Zhang, Q. & Yoshimine, N., 2015), ERP analysis 

was conducted on the EEG data. But the ERP results were lack of repeatability due to 

the limitation of current portable system, and the data was contaminated by artifacts. 

Therefore, in this paper, we apply ICA to analyze our experimental EEG data measured 

to remove the artifacts and examine the independent components of the brain activities 

when the subjects were listening to classic music.  

 

3. Experiment Methods 

The EEG data used in this paper are from the same experiments reported in the authors’ 

another paper (Zhang, Q. & Yoshimine, N., 2015). The experimental conditions and 

analysis methods are described as the follows. 

 

3.1 Experiment apparatus 

A portable EEG system of Emotiv EPOC (Emotiv Inc., 2014) was utilized in our 

experiments. It is a wireless EEG system and able to be applied for researches in 

entertainment, market research, usability testing and neuro-therapy. This system has 14 

channel electrodes and is the first commercial EEG measurement device not employing 

dry sensor technology. The electrodes are located at the positions of AF3, F7, F3, FC5, 

T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4, according to the international 10–10 system 

(American Electroencephalographic Society, 1991).  
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Fig. 1: Stimulus sequence in one experiment session 

 

3.2 Experiment stimuli and data acquisition 

During the experiments, subjects listened to the audio stimuli with their eyes closed. 

The audio stimuli consisted of 13 types of music clips, 6 types of noise clips and silence 

clips. The music clips were cut from 13 pieces of classic music, and lasted for 20 

seconds. Each music clip was played once in one experiment session. As the contrast 

stimulus, 6 types of noises were created, and each were repeated twice except for one 

type, which was repeated for three times. Each noise clip lasted for 5 seconds. All these 

music clips and noise clips were presented randomly during an experiment session. 

Between every music and noise clips, a 3 second silence clip was inserted. Figure 1 

shows the stimulus sequence in one experiment session. 

 

The EEG data were acquired when the subjects were listening to the audio stimuli 

described as the above. An Emotiv EPOC headset was mounted on the subject’s head, 

and the contact quality of the electrodes was adjusted so as to get good signals. During 

the data acquisition, the subjects were sitting on a chair in a comfortable way. They 

wore the stereo earphones, and were asked to concentrate on the sound stimuli with 

their eyes closed and be quiet without body movements. The EEG data collected by the 

emotiv EPOC were sent to a PC via the wireless connection. Three subjects participated 

in the experiments. One subject was measured for 3 experiment sessions, and two 

subjects for 2 sessions. Each subject took part in only one session one day, and the 

multiple sessions for each subject were measured in different days. 
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3.3 Data analysis 

After the EEG data were acquired from the experiments, we analyzed the data using the 

open source software EEGLAB (Delorme, A. & Makeig, S., 2004). First, the 

pre-processing was conducted. A high-pass filter with the lower edge of the frequency 

as 1 Hz and a low-pass filter with the higher edge of the frequency as 40 Hz were 

applied to the EEG data. After that, epochs of the music listening were extracted from 

the entire EEG data. In addition, the mean baseline value during the time range of one 

second ahead of the stimulus was removed. Then the ICA was applied to the EEG epoch 

data. Because the number of the subjects and sessions is small, the group analysis may 

not bring about effective results. Hence, we analyze the EEG data for each subject and 

session respectively.  

 

4. Results and Discussions 

4.1 Experimental results 

Figure 2 shows the scalp map of the ICA components after the ICA processing for 

Subject A. Fourteen components were plotted with their scalp map projection. The scale 

uses arbitrary units. Among them, there were independent components (such as IC1, 

IC2, IC4, and so on) from the brain activities, as well as components (such as IC6) due 

to artifacts. 

When we examined the properties of each independent component (IC), it is found 

that IC2, IC5, IC13 and IC14 showed a clear peak at the frequency of 8 Hz in the power 

spectra, located in the range of alpha rhythm (8-13 Hz). As a representative, the details 

of the properties for component IC2 are shown in Fig. 3 (a). The top left figure is the 

topoplot showing the component values across the scalp. The top right figure is the 

decomposition of the signal in the experiment session, which shows in which trial the 

component is more evident. The bottom figure shows the power spectrum of the 

component. In Fig. 3 (a), we can see that the alpha oscillations are spread in all the trials 

from the right top figure of the component activities, and a clear peak at 8 Hz in the 

range of alpha band from the bottom spectrum figure. The positive potentials are located 

in the occipital areas of the brain from the left top topoplot. 

Besides of the alpha band activities, it is also found that there was a peak appeared 

at about 6 Hz in spectrum for component IC1, IC4, IC9, and IC12 of subject A. The 

peak is located in the range of theta rhythm (4-7 Hz). The details of properties for IC4 is 

shown in Fig. 3 (b). The positive potentials are located in the frontal midline areas of the 

brain. 
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Fig. 2: 2-D scalp maps for 14 components from ICA processing of Subject A. 

 



123 

(a) 

 

(b) 

Fig. 3: Properties of the independent components for Subject A. The top left figure is 

the topoplot showing the component values across the scalp. The top right figure is the 

decomposition of the signal in the experiment session, which shows in which trial the 

component is more evident. The bottom figure shows the power spectrum of the 

component. (a) Properties of the independent component IC2. (b) Properties of the 

independent component IC4. 
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 (a) 

  
 

(b) 

Fig. 4: Properties of the independent components for Subject B. The top left figure is 

the topoplot showing the component values across the scalp. The top right figure is the 

decomposition of the signal in the experiment session, which shows in which trial the 

component is more evident. The bottom figure shows the power spectrum of the 

component. (a) Properties of the independent component IC2. (b) Properties of the 

independent component IC3. 
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(a)  

 

 
(b) 

Fig. 5: Properties of the independent components for Subject C. The top left figure is 

the topoplot showing the component values across the scalp. The top right figure is the 

decomposition of the signal in the experiment session, which shows in which trial the 

component is more evident. The bottom figure shows the power spectrum of the 

component. (a) Properties of the independent component IC4. (b) Properties of the 

independent component IC10. 
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Similar to Subject A, a peak around 10 Hz located in alpha rhythm range was also 

observed for Subject B (Fig. 4 (a) and (b)). The positive potentials are distributed in the 

occipital brain areas. Besides of the alpha waves, another weaker peak was observed at 

about 19 Hz (Fig. 4 (a) and (b)), which belonged to the low beta band rhythm (Kropotov, 

J., 2008). In Fig. 4(b), the peak is a little more remarkable, and the positive potentials 

are located from the occipital areas to the temporal areas of the brain.  

For Subject C, the alpha rhythm peak was also observed (Fig. 5(a)). The positive 

activities are located in the occipital brain area which is the same as that for the other 

two subjects. However, the obvious peaks of theta wave or beta wave around 20 Hz 

were not observed. Instead, a small peak at the frequency about 27 Hz was observed 

(Fig. 5(b)), which is located in the high beta band (Kropotov, J., 2008). The positive 

activities of this high beta frequency are distributed mainly in the frontal brain areas. 

 

4.2 Discussions 

From the above experimental results, we can see that occipital alpha rhythm, frontal 

theta rhythm, occipital-temporal or frontal beta rhythm were observed in the subjects’ 

brain activities when they were listening to music. 

 These frequency ranges have been studied for decades. Alpha rhythms (8-13 Hz) 

usually appear in normal adults during wakefulness, under relaxation and mental 

inactivity conditions. They are best seen with eyes closed, most observed in the 

occipital locations (Kropotov, J., 2008). In our experiments, alpha band activities were 

observed. It confirmed that the subject were under relaxed mental conditions. Because 

the subjects closed their eyes when they were listening to the music, the contributions 

from the music listening or eye closing need to be clarified further in future work. 

Theta band is the frequency band from 4 to under 8 Hz. Theta activity is usually 

observed with a maximum amplitude around the frontal midline. It is usually observed 

under the state of a dream, vivid imagery. A research on auditory and visual working 

memory (Kawasaki, M., et al., 2010) reported that both alpha and theta activities 

increased during the working memory tasks. In our study, the music stimuli were the 

famous classic music, and they may be familiar to subjects. Hereby, we may assume 

that the theta rhythm observed in one subject’s brain activities may be related to the 

working memory process when the subject recalled of the related memory of the music 

stimuli or enjoyed the music with imagery.  

 In addition, beta band is a band between 13-30 Hz, which can be divided into 

smaller categories: low beta band from 13 to 21 Hz and high beta band from 21 to 30 
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Hz. Beta rhythm is usually associated with focused attention, active thinking. Low-beta 

is related to high engagement and high beta is related to complex thought, integrating 

new experiences, high anxiety, or excitement. In our experiments, the beta peaks 

appeared in two subjects’ brain activities. It implied that the subjects were engaged in 

the music listening during the experiments. To reveal the details of the relations between 

the mental conditions and these beta activities, further studies involving psychophysical 

questionnaire survey are necessary. 

Finally, in our experiment, the number of the subjects and trials are small. It is 

necessary to increase the number of subjects and sessions to make the experimental 

results more credible in future work. 

 

5. Conclusions 

In this paper, we studied the brain activities when the subjects were listening to music. A 

14 channel portable EEG system (Emotiv EPOC) was used in the experiments. The 

independent component analysis was applied to the measured EEG data. From the 

experimental results, occipital alpha band activities were observed in all subjects’ brain 

activities. In addition, the frontal midline theta band, occipital-temporal or frontal beta 

band activities were observed in some subjects. These results suggest that the subjects 

were under a relaxed condition when they were listening to the music with their eyes 

closed. At the meantime, they engaged in the music listening and enjoyed the music 

with imagery or memory recalling. Further work is in plan to increase the number of 

subjects and sessions to make the experimental results more credible.  
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